心脏搏动过程中,心肌细胞中钙离子在细胞浆与肌浆网之间穿梭是实现心肌兴奋-收缩耦联的关键步骤,这一过程发生紊乱会导致包括心衰在内的诸多心脏疾病。因此,在由于细胞浆/肌浆网钙穿梭异常导致的心脏疾病治疗中,恢复心肌细胞的钙稳态是一种非常诱人的药物研发策略。心肌细胞中,SERCA2a是一个位于肌浆网上的钙-ATP酶,其主要功能是通过水解ATP介导钙离子从细胞浆到肌浆网内的转运,从而控制心肌舒张。在成熟的小鼠心肌细胞中,大约95%的胞浆钙离子是由SERCA2a重新回收到肌浆网内的。SERCA2a表达量或活性降低都延迟会肌浆网对钙离子的重回收,进而导致肌肉舒张/收缩减弱。因此,以SERCA2a为分子靶点恢复心肌细胞钙稳态、进而治疗心衰等心脏疾病具有非常大的前景。然而,SERCA2a功能调控机制到目前为止尚不十分清楚,而此类调控机制的解析有助于为以SERCA2a为靶点进行药物研发提供新思路。

6月2日,国际学术期刊《细胞死亡与分化》(Cell death and
Differentiation)在线发表了中国科学院上海生命科学研究院章海兵研究组的最新研究成果RIP1
kinase activity-dependent roles in embryonic development of
Fadd-deficient
mice。该研究揭示了细胞生死的关键因子RIP1的激酶活性在调控胚胎发育过程中的细胞死亡与炎症的新机制。

2018年12 月19日,模式动物研究所陈帅教授课题组在国际主流期刊《Circulation
Research》上在线发表题为“SPEG Controls Calcium Re-uptake Into The
Sarcoplasmic Reticulum Through Regulating SERCA2a By Its Second
Kinase-Domain
”的论文。该研究从蛋白质组学入手,发现SERCA2a可以与横纹肌特异性表达的蛋白激酶相互作用;通过一系列深入研究证明了SPEG是SERCA2a的一个全新调控因子,可调控钙离子在细胞浆与肌浆网之间的穿梭。这项研究揭示了心脏钙稳态调控的一种新机制,为钙稳态异常导致的心脏疾病的发病机理及治疗提供了新思路。

细胞的生存与死亡是生物体最基本的调控活动。受体相互作用蛋白激酶-1
被发现不仅是介导细胞存活信号通路的关键因子,也是促进细胞程序性死亡的重要调控因子。RIP1在不同条件下的缺失,导致了包括成体出生后死亡、造血系统缺陷、免疫细胞发育缺陷、皮肤炎症和肠道炎症等多重组织器官的显着表型。RIP1结构上包含有一个激酶结构域、一个RIP互作结构域和一个死亡结构域。尽管对RIP1调控细胞不同信号通路的机制已有很多研究,但各个结构域在调控这些互相矛盾的功能中的作用机制还不是很清楚。

SPEG属于肌球蛋白轻链激酶亚组钙调蛋白激酶丝氨酸/苏氨酸蛋白激酶家族的一员。其C端含有两个串联的丝氨酸/苏氨酸蛋白激酶结构域,其第一个激酶结构域与MLCK亚组的其他成员具有更高的同源性。之前有研究表明,SPEG不仅是心脏发育所必需的、也是维持成年小鼠心脏功能所必不可少的;但是到目前为止仍然不清楚SPEG是如何来调控心脏功能的。

在研究员章海兵的指导下,博士研究生刘永波、范存先等通过构建RIP1激酶结构域不同关键位点突变的小鼠,发现激酶活性的缺失不影响成体小鼠的正常生存,但体内体外实验均证实RIP1激酶活性的降低会特异性地阻断细胞程序性坏死的发生。之前研究发现细胞凋亡基因FADD的缺失导致的胚胎致死是细胞程序性坏死依赖的,即RIP1、RIP3或MLKL的敲除能够挽救FADD敲除小鼠的胚胎发育致死。因此研究人员利用RIP1激酶结构域不同位点突变小鼠与FADD敲除小鼠交配,意外发现RIP1激酶结构域中不同关键位点的突变在抑制FADD敲除小鼠的胚胎致死及介导炎症中的作用不同。进一步对其机制探究,发现RIP1激酶结构域中不同关键位点突变导致其激酶活性缺失程度不一致,从而导致了RIP3、MLKL的磷酸化及多聚化减弱而阻断细胞程序性坏死的程度不同。此外,该研究还发现在FADD缺失条件下,RIP1激酶活性的降低还能诱导胚胎发育过程中过度炎症的产生。RIP1的激酶活性小分子抑制剂Nec-1已经在包括神经退行性疾病等多种疾病的临床研究阶段,这一研究为进一步开发针对RIP1不同激酶活性位点的药物提供理论依据及动物模型。

在本篇研究中,陈帅教授课题组首先通过蛋白质组学分析鉴定出SERCA2a是潜在的可以与SPEG发生相互作用的蛋白。研究人员利用免疫共沉降实验证明无论在体内还是体外,SPEG与SERCA2a都存在相互作用。随后通过在细胞系以及新生大鼠原代心室心肌细胞中进行一系列的实验,他们发现SPEG的第二个激酶结构域可以与SERCA2a相互作用、并直接磷酸化SERCA2a的Thr484位点,进而促进SERCA2a的寡聚化,最终增强SERCA2a转运钙离子的能力。

该研究获得国家自然科学基金委、科技部和中组部青年千人计划等多项科研基金的资助。

188金宝搏 1

图一 SPEG-SERCA2a轴线调控心肌细胞钙离子稳态与心功能

小干扰RNA是一种常见的基因沉默工具,进入细胞后可以引发相应基因的信使RNA快速降解。利用siRNA在NRVC敲降SPEG后,SERCA2a-Thr484的磷酸化水平及肌浆网的钙离子回流都受到了抑制,说明SPEG可以调控SERCA2a的功能。此外,将SERCA2a的Thr484位点突变成不能磷酸化的丙氨酸后,相较于野生型SERCA2a而言,
过表达SERCA2aThr484Ala突变蛋白的NRVC中肌浆网钙离子回流时间延长,进一步说明该磷酸化位点是SERCA2a的关键活性调控位点。

为进一步研究SPEG-SERCA2a这一轴线的在体功能,陈帅教授课题组利用Cre-loxp系统在成年小鼠心脏中特异性敲除Speg基因。与对照小鼠相比,SPEG心脏特异性敲除小鼠罹患严重的扩张型心肌炎,心功能显著降低、并随时间推移不断恶化,最终过早死亡。他们的机制研究显示,缺失SPEG的小鼠心脏中SERCA2a-Thr484的磷酸化水平以及寡聚化都显著降低;最为重要的是,在SPEG心脏特异性敲除小鼠的心功能发生异常之前,其心肌细胞中肌浆网的钙离子回流已经受到抑制。这些结果表明,SPEG-SERCA2a调控轴线具有重要的在体功能,SERCA2a功能受损是SPEG心脏特异性敲除小鼠发生心衰的重要原因。

188金宝搏,综上,该项研究发现了心肌细胞中SERCA2a功能调控的全新机制,并且阐明了SPEG是恢复心肌细胞钙稳态以及心衰等心脏疾病治疗的新的分子靶标。

模式动物研究所博士生全超和李敏为本文共同第一作者,南京大学陈帅教授为本文通讯作者。

(模式动物研究所 科学技术处)